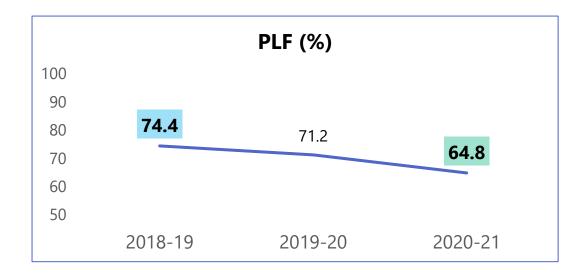
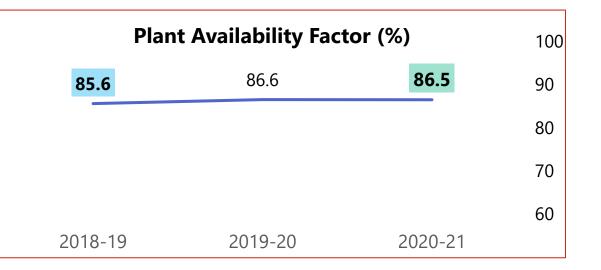


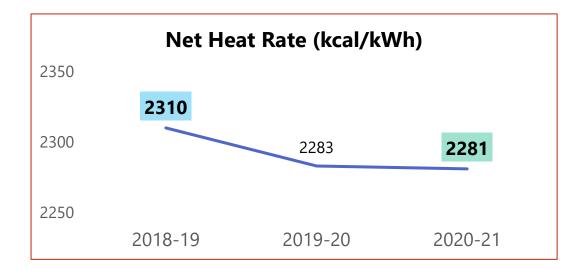
Nabha Power Limited 2*700 MW Supercritical Thermal Power Plant Rajpura, Punjab

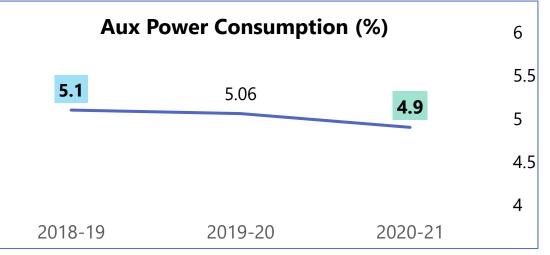
Team: Anand Saxena Alfurqan Jahagirdar Sushanth S

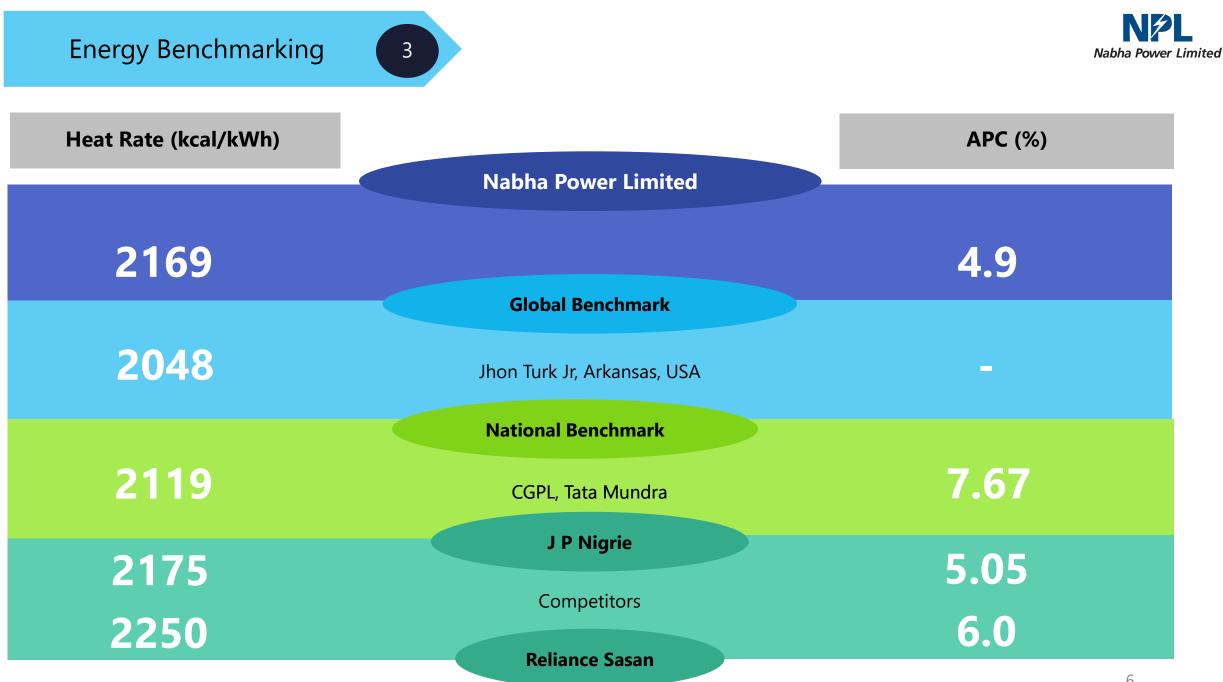
AGENDA


Company Profile




- > Among the largest private investments in Punjab
- > Contributes 50% (non-peak season) and 25% (peak season) of Punjab's own thermal generation
- NPL is certified for ISO 50001:2018 (Energy Management System), ISO 9001:2015 (QMS), ISO 14001:2015 (EMS), ISO 45001:2018 (OHSAS)


S No.	Description	Units	Values
1	Annual Generation	MUs	7951
2	PLF	%	64.84
3	Availability	%	86.56
4	Gross Heat Rate	Kcal/kWh	2169
5	Auxiliary Power	%	4.9
6	Boiler Efficiency	%	88.6
7	Turbine Heat Rate	Kcal/kWh	1923
8	DM Water Make-up	%	0.375
9	Sp. Raw Water Cons.	Cum/MWh	1.78
10	Sp. Oil Consumption	ml/kWh	0.284



S No	Title of Project	Annual Electrical Saving (Million kWh)	Annual Thermal Saving (Million kcal)	Investment (Rs in Million)
1	CW pump internal coating	1.4	0	1.2
2	SCAPH Modification from Fixed design to Rotary design	0.6	0	2.5
3	Replacement of Existing Conventional lights of different rating LED lights	0.6	0	4.2
4	Replacement of High Energy drain valves with better design (32 Nos.)	0	28,959	20

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
1	Online SCAPH cleaning mechanism	1,20,000	0	3.6	0	0
2	Auto cut-off and cut-in logic implemented for ESP support plate insulator heater	22,49,856	0	7.51	0.5	0
3	Replacement of 2 Nos. WDC Valves with new design valves	0	45,618	62.5	4.5	1
4	Replacement of High Energy Drain Valve(4 Nos.)	0	27,371	37.5	4.4	1
5	VFD installation in LDO forwarding pump	80,000	0	0.22	0.23	12

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
6	Installation of steam traps in drain line of pre warming line of LP Bypass valve	0	27,371	37.5	7.5	5
7	Provision of NDCT makeup water through gravity line	7,92,000	0	2.38	3	18
8	Replacement of existing conventional lights with LED lights (Total 106 lights replaced)	23,214	0	0.07	0.53	90
9	Installation of zero loss automatic drain valves in plant instrument air line	9298	0	0.02	0.23	138
	Total	32,74,366	1,00,361	151.3	20.5	2

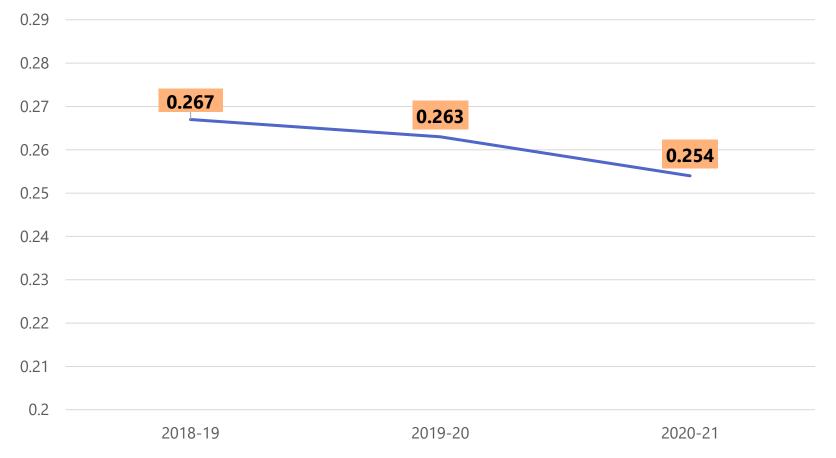
S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
1	Optimization of Dry Ash conveying velocity	1,51,110	0	0.5	0	0
2	Implementation of Magnetic grill & Magnetic Plate in dry ash conveying system	9,97,058	0	3.33	0.75	3
3	Optimization of ESP Hopper Heater	54,43,200	0	18.18	0.17	0
4	Optimization of compressed air network pressure set point using Intelligent Flow Controller	2,56,960	0	0.86	0.56	8
5	Replacement of 2 Nos. WDC Valves with new design valves	0	43,786	62.5	4.5	1

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
6	CSU-1A screw conveyor replacement by Belt conveyor	11,074	0	0.04	0.08	24
7	Retrofitting of Conservative lights with LED lights	1,72,800	0	0.58	0.84	17
8	De-staging of RO water multistage pump	1,83,960	0	0.61	0	0
9	Use of natural light source during day-time	4320	0	0.01	0.11	132
10	Optimization of Chimney and ESP area Lights	2,51,850	0	0.84	0.17	2
	Total	74,72,332	43,786	87.45	7.19	1

ENCON Project FY 2021 7

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
1	SAC -1,2,3,4 Cooler radiator fan operation changed from time based to temperature base	6600	0	0.02	0.06	36
2	Replacement of Existing Conventional lights with LED (Total 798 No. replaced)	2,31,877	0	0.75	0.53	8
3	Overhaul of HIP & LP Turbine and High Energy drain valves (152 Nos.). Boiler Chemical Cleaning	0	74,441	98.37	60.1	7
4	Circulating Water pump 1B internal coating to reduce frictional losses	13,70,160	0	4.45	0.85	2
5	Stopping LDO pump during winter, providing heat tracing cable in suction line LDO pump	73,440	0	0.24	0.47	23

S No	Title of Project	Annual Electrical Saving (kWh)	Annual Thermal Saving (Million Kcal)	Total Annual Saving (Rs Million)	Investment (Rs Million)	Payback (Months)
6	Stopping RO booster pump	31,680	0	0.102	0	0
7	Bypass AHP system while handling CMB water during cleanup activities	15,600	0	0.05	0.02	5
8	Direct utilization of potable water in CHP	12,045	0	0.04	0	0
	Total	17,41,402	74,441	104.0	62.03	7



Renewable Energy (Solar)

Installed Capacity: 205 kW

Generation (Million kWh)

ASH MANAGEMENT

	UOM	2018-19	2019-20	2020-21
Ash Stock in Plant (Yard + Pond)	LMT	5.19	0.22	0.15
Ash Generated	LMT	14.39	12.85	14.20
Ash Utilization	%	91	140	100
Ash Utilization in manufacturing	%	87	135	95
Ash Utilization in FA bricks	%	4	5	5
Ash Utilization in mines	%	0	0	0

FY 2020-21 Ash Handled (Wet Mode) : 14.68 %

Ash Handled (Dry Mode) : 85.32 %

STATUS OF FGD

FGD system Erection work in progress

Detail engineering nearing completion

Ordering of major equipment completed

Super-structure of all major buildings in progress

Flue can fabrication and Slip form work of Chimney-1 in progress

Emission Parameter

FY	Generation (MU)	CO2 emission kg/kWh	SOx (mg/Nm3)	NOx (mg/Nm3)	Particulate Matter (mg/Nm3)
2018-19	9123	0.85	1496	322	41.3
2019-20	8757	0.84	1507	323	41
2020-21	7951	0.84	1442	300	41

WATER CONSUMPTION

0.6 1.9 0.492 0.5 1.85 0.378 0.375 1.8 0.4 1.8 1.78 1.75 0.3 1.76 0.2 1.7 1.65 0.1 1.6 0 2019 2020 2021 — DM Water Consumption (%) -Sp. Raw Water (cum/MWh)

9

Zero Liquid Discharge plant

 Practice of Backwashing , for Dual Media filter and Activated Carbon Filter based on vessel DP & Outlet water quality.

Saving - 12,000 m3/annum

- ETP RO reject water is used for DMF backwash.
- DM plant auto operation resulted in reduction of rinsing time.

Savings: 12,500 m3/annum

- Desludging of Clarifier based on parameters in place of fix schedule.
 Savings: 30,000 m3/annum.
- Water usage for CPU vessel regeneration reduced by adopting better practices such as Increasing the air blowing time and reducing the resin washing time.
 Savings: 24,000 m3/annum

Best O&M Practices

Reliability Centred Maintenance (RCM) Implementation

Implementation of Equipment health card for Critical Equpment

Energy management system for daily energy performance monitoring wrt. benchmark

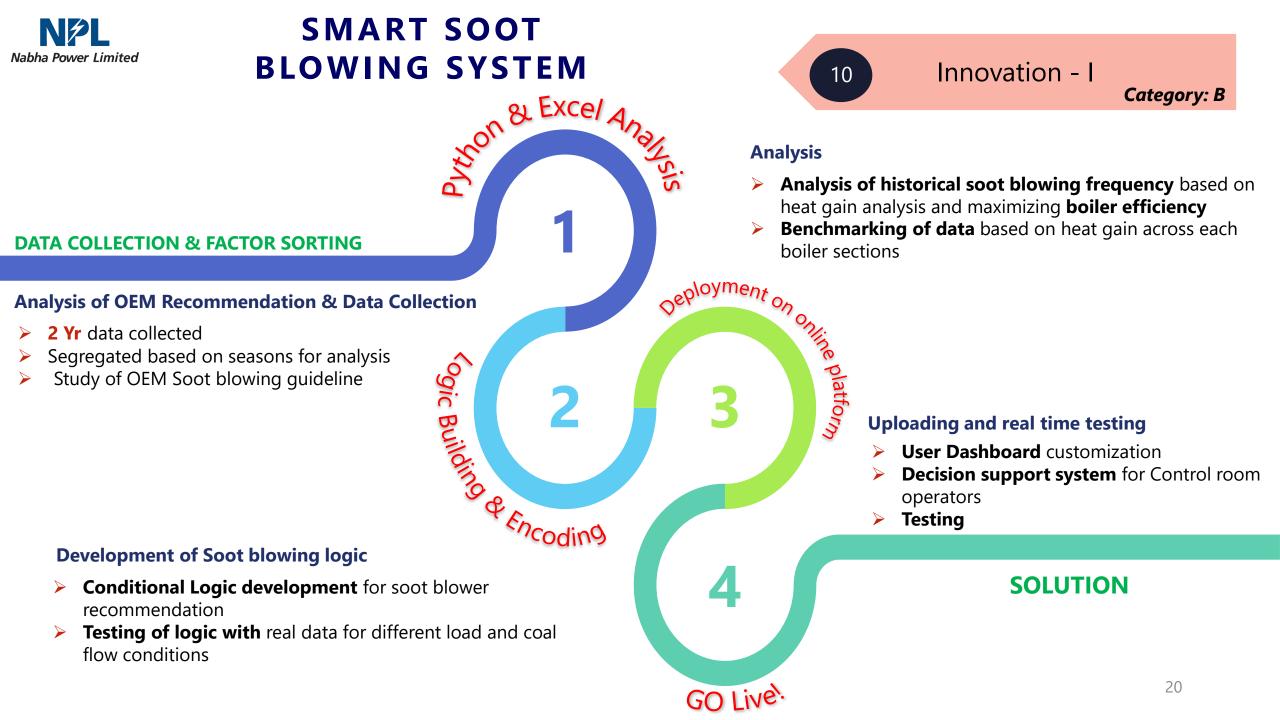
MAXIMO ERP application – Logic forcing, classification of PTW.

Vital Plant Parameter Application on Android & iOS platform

Daily Boiler metal temperature online monitoring and automatic report generation

In-House Development of SMART SOOT BLOWING SYSTEM

Understanding the Problem – Stakeholder Consultation


Defining The Problem

Identifying Applicable Resources – People & Tools – Software

Preparing Roadmap, SOP & Checks

Building Models & Testing

Implementation Validation & Go-Live

SMART SOOT BLOWING SYSTEM

III InSis suite O Oneview Builder				NPL Nabha Power Limited					🔅 🕐 Adminis	strator Jaajitech
╡┙┙╧┛╧╸╧╡╧╪╲╏╡┫थ╢║┇ Х	۲				SMART SOOT BLOW	ING - U#1			Search OneView	vs Q
GENERATION UNIT-1	GAIN (DEG C) 38.28	9 GAIN (DEG C) 35.33	1RY RH GAIN 163.0		1RY SH GAIN (DEG C) 18	RH SPRAY 25	(TPH)	3RY SH GAIN (DEG C) 17.54		
		UNIT-1	SOOT BLOW	ING REQUI	REMENT					
	GROUP	ABC	E	F	G	н	I.	J	К	
PARAMETER	ACTUAL VALUE	WALL BLOWER	3RY-SH	2RY-RH	PASSAGE WALL	1RY-RH	1RY-SH	RE-HEATER PASS ECO	SH-PASS ECO	
RH PASS DAMPER POSITION (%)	29.88									
SH PASS DAMPER POSITION (%)	69.74									
SH SPRAY FLOW (TPH)	55.35									
SSH OUTLET TEMPERATURE (DEG C)	550.90									
PSH OUTLET TEMPERATURE (DEG C)	429.30									
WS STEAM TEMPERATURE (DEG C)	410.90									
PRH OUTLET TEMPERATURE (DEG C)	515.83									
ECO OUTLET TEMPERATURE (DEG C)	336.97									
APH INLET TEMPERATURE (DEG C)	338.18									
ID FAN INLET GAS PRESSURE (mmH2O)	-288.29									
			·						·	

SMART SOOT BLOWING SYSTEM

Innovation - I

Category: B

Before:

- Exact heat gain and baseline values not known
- Manual time-based SB operation frequency

DESCRIPTION	CONDITION	UNIT	BASELINE CONDITION	MAXIMUM VALUES	MINIMUM VALUE	AVERAGE VALUES
RH PASS DAMPER	SMALL	%	31	48	20	31
SH PASS DAMPER	SMALL	%	60	80	52	68
SH SPRAY FLOW TOTAL	LARGE	трн	49	124	0	41
SSH O/L TEMP	HIGH	Deg C	549	560	502	543
PSH O/L TEMP	HIGH	Deg C	429	436	411	424
WS STEAM TEMP	HIGH	Deg C	409	415	394	405

After:

- Baseline data to maximize boiler heat gain generated
- Risk of Excessive soot blowing avoided
- Frequency optimized based on best operating point
- DM water saving, Improved boiler efficiency & reliability (~Rs 10 Lakhs savings with zero investment)

Condition	Wall Blower Soot Blowing Conditions
1	RH pass Damper position < 31 % AND Water Separator O/L temperature < 404 DegC
2	Total DSH Flow >49 TPH AND Water Separator O/L temperature < 404 DegC
	RAPH Flue Gas I/L temperature > 345 DegC AND Water Separator O/L temperature
3	< 404 DegC

UNIT START-UP TIME OPTIMIZATION

Innovation - II

Category: C

Start-up (Hours)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Unit Cold Start-up (Before)	& G	uum Pul Gland Ste narging (eam 🤇	DO Removal from Condensate & System LP& HP clean-up (1						(12) Boiler Light-up & Hot Clean-up (3)				Pressurization to Synchronization (6)										
Unit Cold Start-up (after)	& G	uum Pul Gland Ste narging (eam	DO	Rem	oval	from	Cond		ate & S 11)	ystem	I LP& I	HP clea	an-up		r Light- Clean-ւ	•				irization ⁻ onization			+→ 1 H

Super-critical technology requires stringent water parameters during unit start-up

Changes as per new philosophy:

- During LP clean-up blow out process Hotwell level is kept low 350 mm.
- GSC R/C flow set point is increased to **950 TPH for effective and faster cleaning** of pipes with high water volume
- □ When **Fe < 250 ppb** is achieved in the system, immediately CPU is taken into service and condensate cycle clean-up is taken into recirculation mode
- Reduced clean-up duration by approx. **1** Hr ; Water Handling Optimized
- Streamlined steam and water sampling by reducing bends in sampling lines to SWAS panel
- Reduces DM water consumption (approx. 500 CUM/start-up)

Plant Availability - INR 21 lakhs

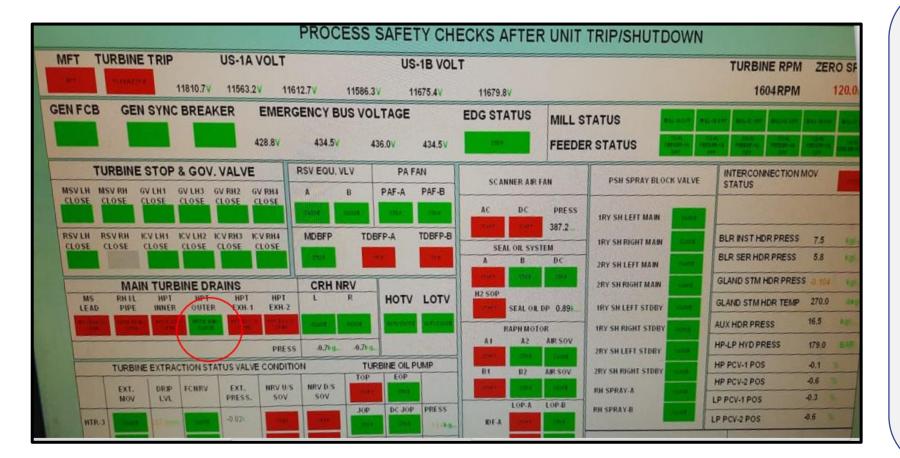
DM Water Savings – Rs 1 Lakhs

DEVELOPMENT OF SINGLE WINDOW MONITORING TOOL IN DCS FOR PLANT AUTO STATUS/SAFE SHUTDOWN STATUS/MOV STATUS

Innovation - III

Category: C

Highlights:


- 1. Safe shutdown of all critical equipment
- 2. To monitor plant auto operation status
- To monitor of power supply status for all MOVs / Dampers / QCNRVs
- 4. This window provides quick overview of status of critical equipment, valve, MOV, QCNRVs and damper.
- Operation engineer can take quick actions against any abnormality observed
- 6. Chances of missing-out any abnormality is minimized
- 7. Enhances plant reliability

DEVELOPMENT OF SINGLE WINDOW MONITORING TOOL IN DCS FOR PLANT AUTO STATUS/SAFE SHUTDOWN STATUS/MOV STATUS

Innovation - III Category: C

Benefits:

- Early diagnose of abnormal status of valves & equipments
- 2. Early Indication for shutdown maintenance
- Risk of Plant Availability loss minimized

Historical Event: CRH NRV condition led to delay in unit start-up by 3 days

DEVELOPMENT OF SINGLE WINDOW MONITORING TOOL IN DCS FOR PLANT AUTO STATUS/SAFE SHUTDOWN STATUS/MOV STATUS

Innovation - III

Category: C

UNIT AUTO MONITORING STATUS										
	EQUIPMENT ASL IN/O	JT MODE		OPERATION CONTROL	ELECTRICAL SYSTEM HEALTHINESS	CRITICAL MOV/DMPR DRIVE HEALTHINESS STATU				
PAFA PAF COP LOP COP IN IN IN ON ON ON	LOP COP LOP S	IDFB AF COP LOP IN IN IN ON ON ON	SAF RAPH A 0.755RPM N N ON ON	FEEDWATER CONTROL TD BFP A A M TD BFP B A M MDB FP W N	FBT IN FBT IN ALL SB (A SECTION) (B SECTION) RETRACTED EDG MAIN EDG STNDBY IN AUTO SEL	FLUE GAS AIR HEATER FLUE GAS 1RY AIR 2RY AIR I/L O/L I/L O/L I/L O/L I/L O/L A RESET RESET RESET RESET RESET RESET B RESET RESET RESET RESET RESET RESET RESET RESET RESET RESET RESET RESET				
A1 A1 B1 A2 A2 B2 FDF A FDF COP LOP COP	B1 A1 A1 B2 A2 A2 B M LOP A B	A1 B1 B1 A2 B2 B2 ILL LOP C D E	B1 B2 A1 A2 A2 A2 F 0.750RPM	AIR AND GAS CONTROL PAF A BP IDF A BP A A A PAF B BP IDF B BP FDF B BP A A A A	COAL FEED RATE CONTROL A B C D E F S A A A A A A	B RESET RES				
	NI III III III III ON ON ON ON B1 A A B2 B B B2 B PT B OVEF	IN IN IN ON ON ON A A A B B B CEP EH GSC OIL FAN	MOT VAP EXT FAN	OPERATION MODE	HOTV HOTV HOTV HOTV HOTV ATOMISING STM PCV A A A A A A A A A A A A A	CPU O/L BFPT A BFPT B MDBFP O2 DOZING ABN ABN SUC SUC SUC MOV ABN ABN RESET RESET HIP OUTER CASING DRN MOV RESET PSH AUX RESET HIP INNER CASING DRN MOV RESET PSH AUX RESET RAPH A SECT PLATE SPLY DRN RESET RESET				
N N ON ON A1 A1 A2 A2	N OFF ON B1 A A B2 B B C C	IN IN IN ON ON ON A A A B B B C	M M ON ON A A B B		VE STATUS F/B TEAM TO BEPT A BEPT B AUX STM EXT STM EXT STM TO STG BEPT B DRN SOV-1 DRN SOV-1 GLNO SEAL OPEN OPEN OPEN OPEN	DC EQUIPMENT SUPPLY HEALTHY STATUS DC EOP RESET TDBFP A T.G RESE DC SOP RESET TDBFP B T.G RESE DC JOP RESET DC TDBFP A RESE TURBINE T.G RESET DC TDBFP B RESE DC SCANNER FAN RESET DC TDBFP B RESE				
LP HP SHELL SHELL OFF ON A A B B	GLND STM LEAK OFF GLND STM SPRAY CV GLND STM AUX CV DA LEVEL CV STATION	A	H2 G STAT	VALVES STATUS DURIN ANSION TANK SOV A 2176.7 mmH20 SAS WATER CV A 40.2 degC FOR WATER CV A 50.3 degC E OIL TEMP CV A 44.9 degC	HP BYPASS A PCV A LP HP BYPASS A SPRAY S LP HP BYPASS B PCV A LP	BYPASS A PCV A FRS 30% CV S BYPASS A SPRAY S BACK PASS DAMPER BYPASS B PCV A (ALL 4) BYPASS B SPRAY S				

PADO

To monitor real time performance and to do what-if analysis!!

MEETING Chaired by CE once in a Month & Chaired by Head O&M fortnightly!!

BUDGET Energy budgeting done during the start of every financial year!!

Systems and Practices

- System-wise and equipment-wise efficiency and gap analysis done (design vs actual)
- Mill Optimization module for optimizing Mill height, burner tilt and tempering air parameters
- Automated daily and monthly report generation
- What-if Analysis tool is used to fine tune the process parameter
- Extensive Metal Temperature monitoring
- Historical data extraction for **detailed analysis** and reporting
- Various other initiatives to improve efficiency
 - Monitoring of high energy valve passing
 - Design Modification
 - Process change
 - Efficiency improvement projects

Awards & Recognitions

- Certificate of Merit by Government of India in NECA-2020
- Twin awards from CII
 - National Energy Leader, 2020, for its progressive performance for second consecutive year in Energy Management (2 times in a row)
 - **Excellent Energy Efficiency Unit, 2020,** award for outstanding achievements in Energy Efficiency (4 times in a row)
- Independent Power Producers of the year 2020 India award in the Asian Power Awards 2020
- Best thermal power generator by IPPAI (3 times in a row (2017-19)
- Recognized as finalist at S&P Global Platts Global Energy Awards 2020 under the category "Award of Excellence-Power", second time in a row.
- Gold Recognition at CII's Outstanding Managers Competition. Theme of the competition was Power of Forecasting

Thank You